Decimals to Fractions
Videos 123 and 124 on www.corbettmaths.com

Question 1: Convert the following decimals to fractions, in their simplest forms

(a) 0.5 (b) 0.3 (c) 0.7 (d) 0.1
(e) 0.8 (f) 0.2 (g) 0.9 (h) 0.6
(i) 0.13 (j) 0.22 (k) 0.31 (l) 0.12
(m) 0.42 (n) 0.89 (o) 0.15 (p) 0.84
(q) 0.25 (r) 0.02 (s) 0.45 (t) 0.07
(u) 0.92 (v) 0.95 (w) 0.16 (x) 0.83

Question 2: Write the following decimals as fractions, in their simplest forms

(a) 0.123 (b) 0.402 (c) 0.676 (d) 0.888
(e) 0.195 (f) 0.625 (g) 0.225 (h) 0.1234
(i) 0.5005 (j) 0.2244 (k) 0.9702 (l) 0.7007

Question 3: Convert the following decimals to fractions, in their simplest forms

(a) 1.3 (b) 1.9 (c) 1.4 (d) 1.5
(e) 2.5 (f) 3.9 (g) 8.5 (h) 1.12
(i) 1.75 (j) 1.72 (k) 2.75 (l) 3.55

© CORBETTMATHS 2018
Decimals to Fractions
Videos 123 and 124 on www.corbettmaths.com

Apply

Question 1: Match up any decimal and fraction that are equivalent. Not all the decimals and fractions will match up.

\[\frac{1}{3} \quad 0.6 \]
\[\frac{3}{5} \quad 1.3 \]
\[\frac{1}{2} \quad 0.5 \]
\[\frac{3}{10} \quad 0.625 \]
\[\frac{5}{8} \quad 0.3 \]

Question 2: Danny has tried to complete his homework. Can you spot any mistakes?

Q1 Write 0.6 as a fraction. Give your answer in its simplest form.
\[\frac{6}{10} \]

Q2 Write 0.08 as a fraction. Give your answer in its simplest form.
\[\frac{2}{50} \]

Q3 Write 0.902 as a fraction. Give your answer in its simplest form.
\[\frac{46}{500} = \frac{23}{250} \]

Answers

✓ ✗

Click here
Scan here

© CORBETTMATHS 2018
Ordering Decimals
Video 95 on www.corbettmaths.com

Question 1: Arrange in order from smallest to largest
(a) 3.7, 3.5, 3.9, 3.4, 3.8
(b) 9.2, 2.9, 5.4, 1.8, 8.7
(c) 4.6, 4.9, 14.1, 0.9, 1.2
(d) 8.13, 8.05, 8.24, 8.09, 8.15, 8.02
(e) 1.53, 1.48, 1.59, 1.44, 2.11, 0.98
(f) 0.59, 1.24, 0.45, 1.34, 0.88, 2.01

Question 2: Arrange in order from smallest to largest
(a) 1.2, 1.08, 1.13, 1.6, 1.29
(b) 5.25, 5.2, 5.19, 5.08, 5.1, 5.21
(c) 40.6, 46.1, 40.49, 40.68, 46, 46.09
(d) 0.24, 0.3, 0.125, 0.2, 0.199, 0.18
(e) 0.82, 0.082, 0.9, 0.807, 0.8
(f) 65, 6.5, 0.65, 7.65, 0.076, 7
(g) 0.25, 0.3, 0.2, 0.06, 0.19
(h) 7.81, 7.49, 7.9, 7.007, 7.1, 7.107
(i) 10.083, 10.08, 10.009, 10.56, 10.3
(j) 0.342, 0.075, 0.256, 0.34, 0.6, 0.4

Question 3: Place the correct sign, < or > between the following pairs of decimals
(a) 6.3 __ 6.7
(b) 0.8 __ 0.5
(c) 2.2 __ 2.15
(d) 8.21 __ 8.9
(e) 9.099 __ 9.0971
(f) 1.205 __ 1.23

Apply

Question 1: Arrange these temperatures in order, from lowest to highest
(a) 11 °C, 10.8°C, 12.3 °C, 15 °C, 12.7 °C
(b) 8.5 °C, 0.7 °C, −3 °C, 0.9 °C, 6 °C, 1.3 °C, −5.1°C

Question 2: Arrange these amounts of money in order, from highest to lowest.
(a) £6.74, £10, £1.99, £8, £3.30, £2
(b) 80p, £1, £0.09, 23p, £2.75, £0.82, £20

© CORBETTMATHS 2018
Ordering Decimals
Video 95 on www.corbettmaths.com

Question 3: The distance of various landmarks from Big Ben are listed below. Arrange the landmarks in order, from closest to furthest.

- London Eye 0.41 miles
- Wembley 11.62 miles
- Buckingham Palace 0.8 miles
- Trafalgar Square 0.63 miles
- Hyde Park 2.27 miles
- Thorpe Park 24.7 miles

Question 4: Arrange these measurements in order from largest to smallest

(a) 6.2m, 6.077m, 6.31m, 6.19m, 6.4m, 6.009m
(b) 5kg, 800g, 1.2kg, 90g, 0.6kg

Question 5: The heights of seven footballers are listed below.

1.9m, 1.82m, 1.78m, 1.8m, 1.88m, 1.86m, 1.7m

(a) Arrange the heights in order from smallest to largest.
(b) Write down the median height.
(c) A player is picked at random. Write down the probability that he is over 1.85m.

Question 6: The lengths of time that it takes to complete a jigsaw are below.

0.5 hours, 1.25 hours, 100 minutes, 0.75 hours, 40 minutes,
2 hours, 1.5 hours, 180 minutes, 61 minutes, 0.25 hours

(a) Arrange the times in order, from quickest to longest.
(b) What fraction of the people completed the jigsaw in under 1 hour?
(c) What percentage of people took 2 hours or longer?
Factors
Video 216 on Corbettmaths

Question 1: List all the factors of these numbers

(a) 8 (b) 10 (c) 7 (d) 12 (e) 20 (f) 22 (g) 18
(h) 50 (i) 15 (j) 19 (k) 30 (l) 100 (m) 32 (n) 24
(o) 42 (p) 28 (q) 66 (r) 70 (s) 45 (t) 60 (u) 25

Question 2: Is 3 a factor of.... ?

(a) 14 (b) 21 (c) 27 (d) 32 (e) 57 (f) 301 (g) 100

Question 3: Is 5 a factor of.... ?

(a) 20 (b) 34 (c) 40 (d) 38 (e) 45 (f) 102 (g) 135

Question 4: List all the factors of these numbers (you may use a calculator)

(a) 84 (b) 140 (c) 200 (d) 240 (e) 145 (f) 192 (g) 244

Question 5: Is 9 a factor of.... ?

(a) 38 (b) 90 (c) 72 (d) 108 (e) 909 (f) 9001 (g) 293

Apply

Question 1: 21 25 30 45
Which number is the odd one out? why?

Question 2: 15 24 28 33
Which number is the odd one out? why?

Question 3: Mary has 26 sweets and is able to share them evenly between her friends. Mary has more than 1 friend. Write down how many friends Mary might have.

Question 4: James says that all numbers have an even number of factors. Is he correct?

Answers

© CORBETTMATHS 2018
Common Factors and the HCF
Video 219 on www.corbettmaths.com

Question 1:
(a) List all the factors of 10
(b) List all the factors of 15
(c) Write down all the common factors of 10 and 15.

Question 2:
(a) List all the factors of 12
(b) List all the factors of 18
(c) Write down all the common factors of 12 and 18.

Question 3: Write down all the common factors of each of these pairs of numbers.
(a) 6 and 8
(b) 15 and 20
(c) 9 and 15
(d) 7 and 14
(e) 30 and 40
(f) 21 and 27
(g) 18 and 30
(h) 16 and 24

Question 4:
(a) List all the factors of 14
(b) List all the factors of 21
(c) Find the highest common factor (HCF) of 14 and 21.

Question 5:
(a) List all the factors of 24
(b) List all the factors of 36
(c) Find the highest common factor (HCF) of 24 and 36.

Question 6: Find the highest common factor (HCF) of each of these pairs of numbers.
(a) 4 and 14
(b) 6 and 9
(c) 9 and 21
(d) 8 and 12
(e) 6 and 15
(f) 10 and 17
(g) 30 and 45
(h) 40 and 60
(i) 28 and 63
(j) 24 and 36
(k) 16 and 28
(l) 18 and 45
(m) 150 and 200
(n) 12 and 54
(o) 90 and 270
(p) 39 and 65

Question 7: Find the highest common factor (HCF) of each of these sets of numbers.
(a) 12, 6 and 15
(b) 27, 33 and 12
(c) 30, 15 and 25
(d) 8, 20 and 12
(e) 10, 25 and 13
(f) 12, 24 and 30
(g) 9, 36 and 45
(h) 100, 125 and 200

© CORBETTMATHS 2018
Question 1: Martin says that 6 is a common factor of 42, 36 and 50. Is he correct?

Question 2: Alannah has two lengths of ribbon. One length of ribbon is 36cm long and the other length is 45cm long. Alannah wants to cut lengths of ribbon into shorter lengths that are of equal length. Alannah does not want any ribbon left over. What is the longest possible length for each of the shorter lengths of ribbon?

Question 3: Sam has completed his maths homework. Can you spot any mistakes?

Find the highest common factor of 18 and 36

Factors of 18: 2, 3, 6, 9
Factors of 36: 2, 3, 4, 6, 9, 12, 18

HCF = 9

Question 4: Olivia thinks of two numbers. The lowest common multiple (LCM) of the two numbers is 36. The highest common factor (HCF) of the two numbers is 3. Both numbers are less than 15. Write down two possible numbers that Olivia could be thinking of.

Question 5: Niamh thinks of two numbers. The highest common factor (HCF) of the two numbers is 8. The lowest common multiple (LCM) of the two numbers is a multiple of 5. Write down two possible numbers that Niamh could be thinking of.

Question 6: Emily thinks of two numbers. The highest common factor (HCF) of the two numbers is 1. The lowest common multiple (LCM) of the two numbers is a multiple of 40. Write down two possible numbers that Emily could be thinking of.
Question 1: Round the following numbers to the nearest 10

(a) 32 (b) 67 (c) 71 (d) 24
(e) 59 (f) 92 (g) 16 (h) 83
(i) 17 (j) 14 (k) 78 (l) 43
(m) 84 (n) 27 (o) 25 (p) 41
(q) 75 (r) 33 (s) 95 (t) 98
(u) 19 (v) 99 (w) 62 (x) 54
(y) 15 (z) 74

Question 2: Round the following numbers to the nearest 10

(a) 121 (b) 146 (c) 164 (d) 185
(e) 292 (f) 238 (g) 312 (h) 333
(i) 845 (j) 582 (k) 233 (l) 167
(m) 596 (n) 705 (o) 502 (p) 993
(q) 998 (r) 1241 (s) 1628 (t) 1164
(u) 2673 (v) 6036 (w) 7555 (x) 8128
(y) 13821 (z) 29234

Question 3: Round the following numbers to the nearest 10

(a) 24.2 (b) 61.9 (c) 76.8 (d) 26.4
(e) 14.7 (f) 231.8 (g) 185.3 (h) 201.5
(i) 78.38 (j) 135.14 (k) 141.97 (l) 164.89
(m) 4938.3 (n) 5141.49 (o) 15.455 (p) 1009.02

© CORBETTMATHS 2018
Rounding
Videos 277a, 277b on Corbettmaths

Question 4: Round the following numbers to the nearest 100

(a) 390 (b) 220 (c) 160 (d) 240
(e) 518 (f) 842 (g) 756 (h) 547
(i) 371 (j) 578 (k) 613 (l) 888
(m) 374 (n) 611 (o) 673 (p) 480
(q) 150 (r) 349 (s) 951 (t) 950
(u) 850 (v) 949 (w) 748 (x) 540
(y) 450 (z) 495

Question 5: Round the following numbers to the nearest 100

(a) 1430 (b) 1280 (c) 1610 (d) 1550
(e) 4030 (f) 6080 (g) 7420 (h) 8160
(i) 3562 (j) 2415 (k) 8283 (l) 5858
(m) 9248 (n) 3358 (o) 4214 (p) 9987
(q) 13494 (r) 16148 (s) 13114 (t) 15832
(u) 26783 (v) 56862 (w) 45555 (x) 13668
(y) 489481 (z) 124346

Question 6: Round the following numbers to the nearest 100

(a) 248.2 (b) 561.9 (c) 716.8 (d) 246.4
(e) 149.7 (f) 2315.8 (g) 1835.3 (h) 2061.5
(i) 2378.38 (j) 5135.14 (k) 9141.97 (l) 4164.89
(m) 44938.3 (n) 25141.49 (o) 1995.455 (p) 51009.02
Question 7: Round the following numbers to the nearest 1000

(a) 2300 (b) 5600 (c) 2900 (d) 8200
(e) 7200 (f) 8420 (g) 2780 (h) 4500
(i) 1930 (j) 6480 (k) 7710 (l) 5500
(m) 4951 (n) 7571 (o) 7456 (p) 5499
(q) 7395 (r) 3112 (s) 3661 (t) 5532
(u) 4945 (v) 9442 (w) 9550 (x) 9499
(y) 9934 (z) 7409

Question 8: Round the following numbers to the nearest 1000

(a) 21800 (b) 18300 (c) 17600 (d) 19200
(e) 11590 (f) 16350 (g) 24500 (h) 34800
(i) 38434 (j) 84925 (k) 48358 (l) 56187
(m) 123940 (n) 293482 (o) 231184 (p) 563921

Question 10: Round the following numbers to the nearest 10000

(a) 39304 (b) 23424 (c) 44500 (d) 26492
(e) 26500 (f) 54588 (g) 62049 (h) 75000
(i) 418553 (j) 144503 (k) 185000 (l) 384458

Question 11: Round the following numbers to the nearest 100000

(a) 384000 (b) 129400 (c) 569000 (d) 812300
(e) 384984 (f) 750000 (g) 1284000 (h) 2840000

Question 12: Round the following numbers to the nearest 1000000

(a) 1492000 (b) 5600000 (c) 7308000 (d) 6670000
(e) 12800000 (f) 17450000 (g) 35700000 (h) 384728521
Rounding
Videos 277a, 277b on Corbettmaths

Question 1: 645 people attended a concert. Round this to the nearest 10.

Question 2: 861 students attend a school. Round this to the nearest 100.

Question 3: The cost of a laptop is £1348. Round this to the nearest £100.

Question 4: 24,812 people attended a football match. Round this to the nearest thousand.

Question 5: The population of a city is 85,398. Round this to the nearest thousand.

Question 6: The number of beads in a jar is 50 to the nearest ten.
 (a) What is the minimum possible number of beads in the jar?
 (b) What is the maximum possible number of beads in the jar?

Question 7: The number of students at a school is 1200 to the nearest 100.
 What is the maximum possible number of students at the school?

Question 8: The population of a village is 900 to the nearest 100.
 State if the following could be true or false:

 (a) 890 people live in the village.
 (b) 960 people live in the village.
 (c) 912 people live in the village.
 (d) 845 people live in the village.
 (e) 850 people live in the village.
 (f) 950 people live in the village.

Question 9: The value of a car is £7000 to the nearest thousand pounds.
 (a) What is the least possible value of the car?
 (b) What is the greatest possible value of the car?

Question 10: The number of people at a concert is 200 to the nearest 10.
 (a) What is the least possible number of people at the concert?
 (b) What is the greatest possible number of people at the concert?

Answers

Click here
Scan here

© CORBETTMATHS 2018
Equivalent Fractions
Video 135 on www.corbettmaths.com

Examples

Workout

Question 1: Find the missing numbers

(a) \(\frac{2}{3} = \) 6
(b) \(\frac{1}{5} = \) 20
(c) \(\frac{3}{4} = \) 12
(d) \(\frac{5}{7} = \) 10

(e) \(\frac{15}{5} = \) 30
(f) \(\frac{4}{8} = \) 21
(g) \(\frac{3}{10} = \) 50
(h) \(\frac{7}{8} = \) 14

(i) \(\frac{3}{4} = \frac{30}{8} = \frac{55}{88}\)
(j) \(\frac{2}{9} = \frac{10}{88}\)
(k) \(\frac{2}{3} = \frac{18}{36}\)

(m) \(\frac{1}{20} = \frac{5}{18}\)
(n) \(\frac{5}{6} = \frac{3}{8}\)
(o) \(\frac{3}{9} = \frac{9}{8}\)
(p) \(\frac{7}{12} = \frac{36}{36}\)

Question 2: Find the missing numbers

(a) \(\frac{6}{7} = \frac{42}{49}\)
(b) \(\frac{9}{20} = \frac{63}{140}\)
(c) \(\frac{5}{12} = \frac{35}{84}\)
(d) \(\frac{7}{8} = \frac{64}{64}\)

(e) \(\frac{4}{72} = \frac{32}{288}\)
(f) \(\frac{3}{4} = \frac{52}{68}\)
(g) \(\frac{7}{25} = \frac{140}{350}\)
(h) \(\frac{15}{42} = \frac{105}{420}\)

(i) \(\frac{11}{16} = \frac{88}{144}\)
(j) \(\frac{2}{9} = \frac{108}{486}\)
(k) \(\frac{13}{25} = \frac{375}{750}\)
(l) \(\frac{9}{144} = \frac{81}{144}\)

Apply

Question 1: Write down 3 different fractions that are equivalent to \(\frac{1}{2}\)

Question 2: Write down 3 different fractions that are equivalent to \(\frac{3}{5}\)

© CORBETTMATHS 2019
Question 3: Write down 3 different fractions that are equivalent to \(\frac{7}{12} \).

Question 4: Dave and Tom are discussing fractions. Is either man correct?

\(\frac{4}{5} \) is equivalent to \(\frac{16}{20} \)

\(\frac{4}{5} \) is equivalent to \(\frac{20}{24} \)

Dave

Tom

Question 5: Use the grid to explain why \(\frac{3}{4} \) cannot be written as a fraction with a denominator of 15.

Question 6: Macey has completed her maths homework. Can you explain what she has done wrong?

(a) \(\frac{3}{4} = \frac{4}{16} \)
(b) \(\frac{3}{5} = \frac{6}{15} \)

(c) \(\frac{7}{8} = \frac{35}{5} \)
(d) \(\frac{2}{8} = \frac{16}{40} \)

Answers

Click here
Scan here © CORBETTMATHS 2019
Ordering Fractions

Video 144 on www.corbettmaths.com

Examples

Workout

<table>
<thead>
<tr>
<th>Question 1</th>
<th>Question 2</th>
<th>Question 3</th>
<th>Question 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) [\frac{6}{7}, \frac{1}{7}, \frac{2}{7}, \frac{5}{7}]</td>
<td>(b) [\frac{1}{10}, \frac{9}{10}, \frac{1}{10}, \frac{7}{10}]</td>
<td>(c) [\frac{2}{9}, \frac{8}{9}, \frac{5}{9}, \frac{1}{9}]</td>
<td>(a) [\frac{1}{5}, \frac{3}{10}, \frac{2}{5}, \frac{1}{10}]</td>
</tr>
<tr>
<td>(d) [\frac{3}{5}, \frac{13}{20}, \frac{2}{5}, \frac{9}{20}]</td>
<td>(b) [\frac{1}{8}, \frac{1}{4}, \frac{5}{8}, \frac{3}{4}]</td>
<td>(c) [\frac{5}{9}, \frac{2}{3}, \frac{7}{9}, \frac{1}{3}]</td>
<td>(d) [\frac{13}{16}, \frac{3}{4}, \frac{5}{8}, \frac{11}{16}]</td>
</tr>
<tr>
<td>(e) [\frac{5}{6}, \frac{7}{12}, \frac{5}{12}, \frac{11}{12}]</td>
<td>(e) [\frac{3}{5}, \frac{7}{10}, \frac{1}{10}, \frac{9}{200}]</td>
<td>(f) [\frac{7}{20}, \frac{23}{60}, \frac{9}{20}, \frac{29}{60}]</td>
<td>(f) [\frac{13}{20}, \frac{4}{5}, \frac{7}{10}, \frac{23}{40}]</td>
</tr>
</tbody>
</table>

Apply

Question 1: Write down a fraction between \(\frac{2}{3} \) and \(\frac{4}{5} \).

Question 2: Write down a fraction between \(\frac{5}{8} \) and \(\frac{2}{3} \).

© CORBETTMATHS 2019
Prime Numbers
Video 225 on www.corbettmaths.com

Examples

Workout

Question 1: List the first ten prime numbers

Question 2: Are the numbers below, prime or not prime?

(a) 5 (b) 9 (c) 10 (d) 11 (e) 13 (f) 15
(g) 19 (h) 21 (i) 22 (j) 30 (k) 31 (l) 44
(m) 49 (n) 29 (o) 35 (p) 1 (q) 39 (r) 27

Question 3: From the box, choose:

(a) the smallest prime number
(b) a prime number that is greater than 10
(c) an even prime number
(d) the largest prime number
(e) three numbers that are not prime

Apply

All prime numbers are odd

Question 1: Explain why Evie is wrong.

Question 2: Use divisibility tests to see if any of these numbers are prime.

(a) 90 (b) 96 (c) 85 (d) 63 (e) 79 (f) 77

Question 3: Find three different prime numbers that have a sum of 40.

Question 4: Find three different prime numbers that have a product of 165

© CORBETTMATHS 2018
Question 5: Goldbach's conjecture states

"every even number greater than 2 can be written as the sum of two primes."

Test this conjecture for all the even numbers up to 50.
Question 1: Write each of the following as multiplications
 e.g. $5^2 = 5 \times 5$

(a) 3^2 (b) 1^2 (c) 6^2 (d) 9^2 (e) 10^2 (f) 4^2 (g) 12^2

Question 2: Write each of the following using the "squared" symbol
 e.g. $8 \times 8 = 8^2$

(a) 2×2 (b) 5×5 (c) 11×11 (d) 35×35 (e) 20×20 (f) 13×13 (g) 7×7

Question 3: Work out each of the following

(a) 5^2 (b) 3^2 (c) 8^2 (d) 9^2 (e) 2^2 (f) 10^2 (g) 7^2
 (h) 1^2 (i) 4^2 (j) 6^2 (k) 11^2 (l) 20^2 (m) 12^2 (n) 50^2

Question 4: Write down the first 10 square numbers

Question 5: Work out each of the following.
 You may not use a calculator

(a) 14^2 (b) 18^2 (c) 21^2 (d) 27^2 (e) 35^2 (f) 19^2 (g) 28^2
 (h) 43^2 (i) 56^2 (j) 81^2 (k) 92^2 (l) 99^2 (m) 120^2 (n) 163^2

Question 6: Work out each of the following.
 You may use a calculator

(a) 73^2 (b) 59^2 (c) 208^2 (d) 199^2 (e) 6.5^2 (f) 8.2^2 (g) 7.8^2
 (h) 0.7^2 (i) 27.6^2 (j) 0.45^2 (k) 19.11^2 (l) 800^2 (m) 1000^2 (n) 1111^2
Squaring Numbers
Videos 226 and 227 on Corbettmaths

Question 1: Write down the square numbers from the list below

91 101 10 2 4 81 200 16 90 121

Question 2: 100 can be written as the sum of two different square numbers. Which two square numbers?

Question 3: 85 can be written as the sum of two square numbers in two different ways. Show how this can be done.

Question 4: Tom says "if you square a number the answer is always bigger." Show Tom is incorrect using two different examples.

Question 5: James is adding up consecutive triangular numbers
(a) Write down the first 10 triangular numbers (you may research this)
(b) Add together the first and second triangular numbers.
(c) Add together the second and third triangular numbers.
(d) Add together the third and fourth triangular numbers.
(e) What do you notice about your answers?
(f) Will this always happen? Can you explain why?

Question 6: Rebecca says "when you add three consecutive square numbers, the answer is always odd." Is Rebecca right? Explain your answer.

Question 7: Duncan has answered the questions below. Can you spot any mistakes?

Write down the value of

(a) 3^2

$3 \times 2 = 6$

(b) seven squared

$7 \times 2 = 14$

(c) 8^2

$8 \times 2 = 16$

(1)

Answers

Click here

Scan here

© CORBETTMATHS 2018
Question 1: Work out the following multiplications

(a) 32×3
(b) 15×5
(c) 23×4
(d) 19×3
(e) 47×2

(f) 6×21
(g) 35×5
(h) 59×4
(i) 7×28
(j) 62×6

(k) 74×5
(l) 53×9
(m) 7×66
(n) 83×8
(o) 96×9

Question 2: Work out the following multiplications

(a) 223×2
(b) 132×3
(c) 124×4
(d) 5×135

(e) 403×6
(f) 263×6
(g) 365×7
(h) 308×9

(i) 6×555
(j) 758×4
(k) 642×8
(l) 383×7

(m) 798×9
(n) 1294×5
(o) 2074×6
(p) 8×4868

Apply

Question 1: Work out the product of 18 and 4

Question 2: How many days are there in 35 weeks?

Question 3: Mr Burns wants to buy every student in Year 11 a doughnut. There are 120 students in Year 11. Mr Burns buys 26 bags of doughnuts and there are 5 doughnuts in a bag. Has Mr Burns bought enough doughnuts?

Question 4: Claudia saves £8 every month. How much money does she save over 2 years?

Question 5: Find the area of this rectangle.

© CORBETTMATHS 2018
Question 6: At a wedding, there are 16 tables.
 15 tables seat 6 guests
 1 table will seat 8 guests

Work out the total number of chairs needed.

Question 7: Here is part of Olive’s gas bill.
Each unit of gas costs 9p.

Old reading 1695 units
New reading 2104 units

Work out how much Olive will have to pay.

Question 8: Leanne works in a cinema.
 She is paid £7 per hour for the first 120 hours she works each month.
 Leanne is paid an overtime rate of £9 per hour for any additional hours.
 In September she works 138 hours.
Work out how much Leanne is paid.

Question 9: Below are two boxes that contain numbers.

<table>
<thead>
<tr>
<th>Box 1</th>
<th>Box 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>94</td>
</tr>
</tbody>
</table>

Choose one number from each box that multiply together to give an answer between 400 and 500.

Question 10: Nicole owns a clothes shop.
 She buys 8 jackets for £73 each.
 Nicole sells the jackets for £125 each.

Work out her profit.

Question 11: 800 people attended a charity football match between Ballymena United and AFC Telford.
 Adult tickets are £9 and child tickets are £4.
 Out of the 800 people at the match, 155 are children

How much money was raised for charity?
Question 12: Mr and Mrs Neill book a 10 day holiday in July. They have three children. Work out the total cost.

<table>
<thead>
<tr>
<th>CORBETTMATHS HOLIDAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price per day</td>
</tr>
<tr>
<td>DATES</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1st March to 30th April</td>
</tr>
<tr>
<td>1st June to 31st August</td>
</tr>
</tbody>
</table>

There is a £15 booking charge for every holiday.

Question 13: Bertie wants to buy a table and six chairs. Where should he buy them?

Furniture World	
Table £180	
Each chair £45	
Furniture Land	
Table Free if you buy 6 chairs	Each chair £77
Home of Furniture	
Table £194	
Two chairs £82	

Question 14: Place the digits 4, 5, 6 and 8 into the boxes below so that

(a) You find the largest possible answer.
(b) You find the smallest possible answer

\[
_ \times _ _ _ _ _ \]

Question 15: Donald is buying ribbon to wrap his Christmas presents. The ribbon costs £1.89 per metre. He buys 7 metres of ribbon. Work out the total cost.